UBC Math Circle 2022 Problem Set 4

1. A composition of n is a sequence o = (ay, o, ...,q) of positive integers such that
> «; = n. Prove that
(a) The number of compositions of n is 2"~ 1.
(b) The total number of parts of all compositions of n is equal to (n + 1)2" 2.

(¢) For n > 2, the number of compositions of n with an even number of even parts is
equal to 2772

Solution: (Victor Wang)

(a) Note there is a bijection between the compositions of n and subsets of [n —1] =
{1,...,n—1}, sending (ay,...,ax) = {a, a1 +ag,...,aq + -+ ap_1}. Since
there are 2" subsets of [n — 1], it follows that there are 2"~ compositions of
n.

(b) The number of parts in a composition (a, ..., ax) of n exactly one more than
the number of elements in the corresponding subset {ay, a3 +ag, ..., a0+ -+
ai_1} of [n — 1]. Note the bijection from the subsets of [n — 1] to itself sending
S+ [n—1]\ S satisfies |[S| + |[n — 1] \ S| = n — 1. Hence the total number of
parts of all compositions of n is equal to

1 _ _1 n—1 __ n—2
QSCZM<|5|+1+|[n NS +1) =5+ 1)2"" = (n+1)2"*.

(c) Consider the bijection from the set of compositions of n to itself sending
(a1,...,a5) = (Lag—1,...;ap) if g > 1, and = (g + g, ..., ) if a; = 1.
(What does this involution correspond to under the bijection to subsets of
[n — 1]7) This bijection changes the parity of the count of even parts. Hence,
exactly half of all compositions of n have an even number of even parts, so the
number of compositions of n with an even number of even parts is 2" 2.

2. On some planet, there are 2"V countries (N > 4). Each country has a flag N units wide
and one unit high composed of N fields of size 1 x 1, each field being either yellow or
blue. No two countries have the same flag. We say that a set of N flags is diverse if these
flags can be arranged into an N x N square so that all N fields on its main diagonal will
have the same color. Determine the smallest positive integer M such that among any
M distinct flags, there exist N flags forming a diverse set.

Solutions edited by Josh Gomes and Victor Wang.



Solution: (Joanna Weng)

Consider the 2V=2 > N > 4 distinct flags with yellow in the first column and blue
in the second column. Among these flags, it is impossible to arrange N of them into
an N x N square so that all fields on its main diagonals will have the same colour.
Hence, M > 2N-2,

We show that M = 2¥=2 4+ 1. To do this we make use of the following theorem.

Theorem 1 (Hall’s Marriage Theorem). Suppose G is a bipartite graph with bipar-
tition (A, B). There is a matching that covers A if and only if for every X C A,
Ng(X) > | X| where Ng(X) is the number of neighbours of X.

Suppose for a contradiction that M > 2V=2 + 1. Then there exists some set of flags
F of size 272 +1 that does not have an N-subset (a subset of size N) that is diverse.
Let C be the set of all columns, i.e., the set {1,2,..., N}. We define bipartite graphs
G and G’ with bipartition (C, F') so that a flag f € F' is incident to a column ¢ € C'
if and only if f has colour w at column ¢, where w is yellow for G and blue for G’. It
is easy to see that any matching of G or G’ that covers C produces an N-subset of F
that is diverse. So G and G’ cannot have a matching that covers C'. By Theorem 1,
this means that there are nonempty subsets X and Y of C' such that Ng(X) < | X|
and N¢ (YY) < |Y|. This implies that the number of flags in F' that have a blue field
at a column in X is at most | X|— 1, and the number of flags in F' that have a yellow
field at a column in Y is at most Y| — 1. So the maximum number of flags in F
that do not have a blue field at a column in X or a yellow field at a column in Y is
2N=IXI=IYl Tt then follows that

N2 L1 < (IX] =)+ (Y] = 1)+ 2V I — oN=2 1 3 < | X| 4 Y| 42V - XI=IY

If | X| +|Y]| > 2, the above inequality will of course be false. So |X|+ |Y| < 1. But
this is also not possible for then either | X| or |Y] is zero, making X or Y empty. So
it must be the case that M = 2V=2 4+ 1 as desired.

3. N cells are chosen on a rectangular grid. Let a; is number of chosen cells in i-th row, b,
is number of chosen cells in j-th column. Prove that

[Tt J]ost <
i J

Solution: (Arvin Sahami)

Let the grid have m rows and n columns. Assume that we want to count the number
of permutations of 1,2,...,n over the N chosen cells. It is easy to check that this
number is N!.




In what follows, we define our permutation function over the N marked cells only,
and we ignore the unmarked cells.

Call a permutation function r over the N cells row-wise if it keeps all cells in their
row, i.e., when given a permutation (xy, s, ..., zy) as input and r(xy, za,...,zy) =
(y1,Y2,---,yn) as output, then z; and y; are on the same row. We can define a
column-wise permutation similarly.

Now note that there are at most
A =TI7"(a;)!

row-wise permutations for any row, and there are a;! ways to permute the marked cells
of row 7. We should multiply all of these numbers to get all possible permutations.
Let {ry,7q,...,7a} be the set of these permutations.

In the same fashion, we can show that there are at most

B = 1L} (b;)!
column-wise permutations. Let the set of these permutations be {¢y,¢,...,cp}.
Now, considering I = (1,2,..., N) as out initial permutation, we will look at per-

mutations of the form r;(¢;(/)) for 1 <i<m,1 < j <n.
First, we show the following:

Claim: The two permutations

ri(c; (1)), ri(ce(1))
are equal if and only if i = k and ¢ = j.

Proof. First, note that every permutation has an inverse. Now, observe that the
inverse permutation of a row-wise (resp. column-wise) permutation must be row-
wise (resp. column-wise) and combination of two row-wise (resp. column-wise)
permutations is row-wise (resp. column-wise). Letting r;° 1 to be the inverse of r;, we
have:

ri(e; (1) = ri(eeI)) = 1 (rile;(1))) = ri7* (rilee(1))).
Now r; '(ry(w)) is also a row-wise permutation, say .. This implies that

¢;(I) = r=(ce(l)).

But this means that r, should be the identity permutation since if r, actually moves
something through a row, ¢; on the LHS will fail to do so! Hence,

r,=id = ¢j(I)=¢) = j={

and

rzzri_lrk:id — r;rid=r;=r, = 1=k




as desired.

Finally, getting back to the problem, let S be the set of permutations reachable by
ri(c;(I)). For different values of i, j, the above claim shows that |S| = A- B since we
have a unique permutation for each choice of A, B.

It is obvious that |S| < N!since S is a subset of the set of all permutations. Hence,

the inequality
7 a;! - I bl = A-B=|S] < NI!

follows as desired!

4. You are given an unbiased fair coin C'. Can you use C' to simulate a biased coin C” which
produces heads with probability p such that on average C' is flipped twice? (i.e. either
come up with a procedure which simulates C” and flips C' twice on average or prove that
no such procedure exists).

Solution: (Oakley Edens)

Let p = 0.p1ps ... be the binary representation of p. Next, we flip C, recording a
binary number ¢ = 0.¢1Gs . .. g, (with ¢; the result of the i-th coin flip: 0 if heads,
1 if tails) until that value of n where it becomes clear that ¢ < p or ¢ > p. If
q < p then the result of the simulated coin flip is heads while if ¢ > p the result is
tails. This procedure produces a random number in the interval [0, 1]. Thus it has
probability p of being chosen in the interval [0, p]. This proves that the procedure
accurately simulates a biased coin of probability p. Finally, the simulation ends
after k steps if and only if ¢; = p; for all 1 < i < k — 1 but gx # pi. This has
probability zik The expected number of flips is then )7, % To evaluate this sum,

we take the geometric series formula )%, ' = 2= for |z| < 1 and differentiate both
sides. This gives Y oo ix" 1 = ﬁ Multiplying by x gives that Y .= iz = o
Observe that x = % is well within the radius of convergence, thus we get an average

of Y0, % =2 flips.

5. The Fibonacci numbers may be defined by the recurrence

FO - O, F1 - 1,
and
Fn =rlp1+ an2
for n > 1.
Show that

Fn+m - n—lFm+FnFm+l



for all n > 1 and m > 0. (Possible solution hint: observe that for n > 1, the number of
possible ways of tiling a 1 x (n — 1) rectangle with monominos and dominos is equal to
F,.)

Solution: Following the hint, we first note that F,, for n > 0 is the number of ways
a(n—1) of tiling a 1 x (n—1) rectangle with monominos and dominos. This is because
a(—1) = 0 and a(0) = 1 (both in a vacuous sense), and for larger n when tiling a
1 x (n — 1) rectangle, either the first square is filled with a monomino and there are
a(n—2) ways to complete the tiling, or the first two squares are covered by a domino
and there are a(n — 3) ways to complete the tiling (so a(n—1) = a(n—2)+a(n—3)).

When tiling a 1 x (n+m—1) rectangle, either the (n—1)st and nth square are covered
by the same domino in which case there are F,,_1F}, ways to complete the tiling, or
the tiling decomposes into a tiling of the first n — 1 squares and the last m squares
in which case there are F, F,, .1 ways to do so. Hence F,,, = F,_1F,, = F,F11,
as desired.




