
UBC Math Circle 2022 Problem Set 4

1. A composition of n is a sequence α = (α1, α2, . . . , αk) of positive integers such that∑
αi = n. Prove that

(a) The number of compositions of n is 2n−1.

(b) The total number of parts of all compositions of n is equal to (n+ 1)2n−2.

(c) For n ≥ 2, the number of compositions of n with an even number of even parts is
equal to 2n−2.

Solution: (Victor Wang)

(a) Note there is a bijection between the compositions of n and subsets of [n−1] =
{1, . . . , n−1}, sending (α1, . . . , αk) 7→ {α1, α1+α2, . . . , α1+ · · ·+αk−1}. Since
there are 2n−1 subsets of [n− 1], it follows that there are 2n−1 compositions of
n.

(b) The number of parts in a composition (α1, . . . , αk) of n exactly one more than
the number of elements in the corresponding subset {α1, α1+α2, . . . , α1+ · · ·+
αk−1} of [n− 1]. Note the bijection from the subsets of [n− 1] to itself sending
S 7→ [n− 1] \ S satisfies |S|+ |[n− 1] \ S| = n− 1. Hence the total number of
parts of all compositions of n is equal to

1

2

∑
S⊆[n]

(|S|+ 1 + |[n− 1] \ S|+ 1) =
1

2
(n+ 1)2n−1 = (n+ 1)2n−2.

(c) Consider the bijection from the set of compositions of n to itself sending
(α1, . . . , αk) 7→ (1, α1 − 1, . . . , αk) if α1 > 1, and 7→ (α1 +α2, . . . , αk) if α1 = 1.
(What does this involution correspond to under the bijection to subsets of
[n− 1]?) This bijection changes the parity of the count of even parts. Hence,
exactly half of all compositions of n have an even number of even parts, so the
number of compositions of n with an even number of even parts is 2n−2.

2. On some planet, there are 2N countries (N ≥ 4). Each country has a flag N units wide
and one unit high composed of N fields of size 1 × 1, each field being either yellow or
blue. No two countries have the same flag. We say that a set of N flags is diverse if these
flags can be arranged into an N ×N square so that all N fields on its main diagonal will
have the same color. Determine the smallest positive integer M such that among any
M distinct flags, there exist N flags forming a diverse set.
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Solution: (Joanna Weng)

Consider the 2N−2 ≥ N ≥ 4 distinct flags with yellow in the first column and blue
in the second column. Among these flags, it is impossible to arrange N of them into
an N ×N square so that all fields on its main diagonals will have the same colour.
Hence, M > 2N−2.

We show that M = 2N−2 + 1. To do this we make use of the following theorem.

Theorem 1 (Hall’s Marriage Theorem). Suppose G is a bipartite graph with bipar-
tition (A,B). There is a matching that covers A if and only if for every X ⊆ A,
NG(X) ≥ |X| where NG(X) is the number of neighbours of X.

Suppose for a contradiction that M > 2N−2 + 1. Then there exists some set of flags
F of size 2N−2+1 that does not have an N -subset (a subset of size N) that is diverse.
Let C be the set of all columns, i.e., the set {1, 2, . . . , N}. We define bipartite graphs
G and G′ with bipartition (C,F ) so that a flag f ∈ F is incident to a column c ∈ C
if and only if f has colour w at column c, where w is yellow for G and blue for G′. It
is easy to see that any matching of G or G′ that covers C produces an N -subset of F
that is diverse. So G and G′ cannot have a matching that covers C. By Theorem 1,
this means that there are nonempty subsets X and Y of C such that NG(X) < |X|
and NG′(Y ) < |Y |. This implies that the number of flags in F that have a blue field
at a column in X is at most |X|−1, and the number of flags in F that have a yellow
field at a column in Y is at most |Y | − 1. So the maximum number of flags in F
that do not have a blue field at a column in X or a yellow field at a column in Y is
2N−|X|−|Y |. It then follows that

2N−2+1 ≤ (|X|− 1)+ (|Y |− 1)+2N−|X|−|Y | =⇒ 2N−2+3 ≤ |X|+ |Y |+2N−|X|−|Y |.

If |X|+ |Y | ≥ 2, the above inequality will of course be false. So |X|+ |Y | ≤ 1. But
this is also not possible for then either |X| or |Y | is zero, making X or Y empty. So
it must be the case that M = 2N−2 + 1 as desired.

3. N cells are chosen on a rectangular grid. Let ai is number of chosen cells in i-th row, bj
is number of chosen cells in j-th column. Prove that∏

i

ai! ·
∏
j

bj! ≤ N !

Solution: (Arvin Sahami)

Let the grid have m rows and n columns. Assume that we want to count the number
of permutations of 1, 2, . . . , n over the N chosen cells. It is easy to check that this
number is N !.
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In what follows, we define our permutation function over the N marked cells only,
and we ignore the unmarked cells.

Call a permutation function r over the N cells row-wise if it keeps all cells in their
row, i.e., when given a permutation (x1, x2, . . . , xN) as input and r(x1, x2, . . . , xN) =
(y1, y2, . . . , yN) as output, then xi and yi are on the same row. We can define a
column-wise permutation similarly.

Now note that there are at most

A = Πm
1 (ai)!

row-wise permutations for any row, and there are ai! ways to permute the marked cells
of row i. We should multiply all of these numbers to get all possible permutations.
Let {r1, r2, . . . , rA} be the set of these permutations.

In the same fashion, we can show that there are at most

B = Πn
1 (bi)!

column-wise permutations. Let the set of these permutations be {c1, c2, . . . , cB}.
Now, considering I = (1, 2, . . . , N) as out initial permutation, we will look at per-
mutations of the form ri(cj(I)) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

First, we show the following:

Claim: The two permutations

ri(cj(I)), rk(cℓ(I))

are equal if and only if i = k and ℓ = j.

Proof. First, note that every permutation has an inverse. Now, observe that the
inverse permutation of a row-wise (resp. column-wise) permutation must be row-
wise (resp. column-wise) and combination of two row-wise (resp. column-wise)
permutations is row-wise (resp. column-wise). Letting r−1

i to be the inverse of ri, we
have:

ri(cj(I)) = rk(cℓ(I)) =⇒ r−1
i (ri(cj(I))) = r−1

i (rk(cℓ(I))).

Now r−1
i (rk(x)) is also a row-wise permutation, say rz. This implies that

cj(I) = rz(cℓ(I)).

But this means that rz should be the identity permutation since if rz actually moves
something through a row, cj on the LHS will fail to do so! Hence,

rz = id =⇒ cj(I) = cℓ(I) =⇒ j = ℓ

and
rz = r−1

i rk = id =⇒ ri · id = ri = rk =⇒ i = k
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as desired.

Finally, getting back to the problem, let S be the set of permutations reachable by
ri(cj(I)). For different values of i, j, the above claim shows that |S| = A ·B since we
have a unique permutation for each choice of A,B.

It is obvious that |S| ≤ N ! since S is a subset of the set of all permutations. Hence,
the inequality

Πm
i=1ai! · Πn

i=1bi! = A ·B = |S| ≤ N !

follows as desired!

4. You are given an unbiased fair coin C. Can you use C to simulate a biased coin C ′ which
produces heads with probability p such that on average C is flipped twice? (i.e. either
come up with a procedure which simulates C ′ and flips C twice on average or prove that
no such procedure exists).

Solution: (Oakley Edens)

Let p = 0.p1p2 . . . be the binary representation of p. Next, we flip C, recording a
binary number q = 0.q1q2 . . . qn (with qi the result of the i-th coin flip: 0 if heads,
1 if tails) until that value of n where it becomes clear that q ≤ p or q > p. If
q ≤ p then the result of the simulated coin flip is heads while if q > p the result is
tails. This procedure produces a random number in the interval [0, 1]. Thus it has
probability p of being chosen in the interval [0, p]. This proves that the procedure
accurately simulates a biased coin of probability p. Finally, the simulation ends
after k steps if and only if qi = pi for all 1 ≤ i ≤ k − 1 but qk ̸= pk. This has
probability 1

2k
. The expected number of flips is then

∑∞
i=1

i
2i
. To evaluate this sum,

we take the geometric series formula
∑∞

i=1 x
i = 1

1−x
for |x| < 1 and differentiate both

sides. This gives
∑∞

i=1 ix
i−1 = 1

(1−x)2
. Multiplying by x gives that

∑∞
i=1 ix

i = x
(1−x)2

.

Observe that x = 1
2
is well within the radius of convergence, thus we get an average

of
∑∞

i=1
i
2i
= 2 flips.

5. The Fibonacci numbers may be defined by the recurrence

F0 = 0, F1 = 1,

and
Fn = Fn−1 + Fn−2

for n > 1.

Show that
Fn+m = Fn−1Fm + FnFm+1
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for all n ≥ 1 and m ≥ 0. (Possible solution hint: observe that for n ≥ 1, the number of
possible ways of tiling a 1× (n− 1) rectangle with monominos and dominos is equal to
Fn.)

Solution: Following the hint, we first note that Fn for n ≥ 0 is the number of ways
a(n−1) of tiling a 1×(n−1) rectangle with monominos and dominos. This is because
a(−1) = 0 and a(0) = 1 (both in a vacuous sense), and for larger n when tiling a
1× (n− 1) rectangle, either the first square is filled with a monomino and there are
a(n−2) ways to complete the tiling, or the first two squares are covered by a domino
and there are a(n−3) ways to complete the tiling (so a(n−1) = a(n−2)+a(n−3)).

When tiling a 1×(n+m−1) rectangle, either the (n−1)st and nth square are covered
by the same domino in which case there are Fn−1Fm ways to complete the tiling, or
the tiling decomposes into a tiling of the first n− 1 squares and the last m squares
in which case there are FnFm+1 ways to do so. Hence Fn+m = Fn−1Fm = FnFm+1,
as desired.
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